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Outline
• What is dark matter?
• Supersymmetry provides a dark matter 

candidate
• Experimental tools: The Fermilab 

Tevatron and CDF
• Searching for dark matter in particle 

collisions
• My work this summer
• Conclusion
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What is Dark Matter?
• Very little is known
• Why is it called “dark”?

– Does not interact with light 
(hence we cannot see it)

• Has mass and attracts other 
objects through gravity
– This is how we know it exists

• 23% of the energy of the 
universe
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Some Experimental Evidence
• The rotational 

velocity curves in 
galaxies are not 
what we expect

• There must be 
additional mass 
(dark matter) 
spread throughout 
galaxies

• Other experiments 
agree
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“Cold” Dark Matter vs. 
“Warm” Dark Matter

Cold Dark Matter is favored 
for large-scale galaxy 
formation
Warm Dark Matter is 
favored for sub-galactic 
scale formation
Most searches focus on Cold 
Dark Matter, but we search 
for Warm Dark Matter 
because we have a powerful 
new search technique

Warm
Mass ~1 keV

Moves “faster”

Cold
Mass ~100 GeV
Moves “slower”
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The Standard Model and Dark Matter
• The standard model is a 

description of the 
currently known 
elementary particles

• None of the known 
particles fits the bill as a 
dark matter candidate

• Therefore, we must 
consider new models of 
physics to find a dark 
matter candidate
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Supersymmetry to the Rescue?
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4 neutralinos

2 charginos

• Supersymmetry is a model of particle physics that 
predicts new particles

• If this theory is correct, one of these new particles 
could be the dark matter

• Our warm dark matter candidate is a gravitino,    , 
the supersymmetric partner of the yet 
undiscovered graviton

G~
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Now that we have a specific 
dark matter candidate, how 

might we experimentally 
search for it?
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The Fermilab Tevatron
• The Fermilab 

Tevatron collides 
protons and anti- 
protons moving at 
more than 0.99999c.

• This amount of 
energy may be great 
enough to produce 
supersymmetric 
particles that decay 
to dark matter
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Collider Detector at Fermilab (CDF)
A Photograph

Surround the collision point with 
a huge detector

The detector gives us lots of information about the particles 
produced in the collision.  We can use this information to 
determine if new physics has occurred.
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Dark Matter Production

• The     is our dark matter candidate
• The    is a photon- CDF is very good at detecting 

these

• The neutralino,    , (another supersymmetric 
particle) may be produced in pairs at Fermilab 
and decay via

G~

G~

0

1
~χ

0

1
~χ

p

p

γ

γ

Escape the detector

Can be detected : 
“Delayed” photons

Travel before decaying

Gχ ~ ~0
1 γ→

G~
γ

0
1

~χ
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“Delayed” Photons

1
0
χ∼

γ

p
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γprompt 

CDF Calorimeter

neutralino from γ

• In the current theory of particles, photons always 
travel directly from the collision point to the detector

• Neutralinos can travel away from the collision point 
and then decay
– The photon arrives at the detector later than 

expected, in other words “delayed”
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Conservation of Momentum
• The energy deposited in the calorimeter 

should be balanced around the collision
• Gravitinos and neutralinos leave the 

detector without depositing energy (they 
are weakly interacting), resulting in 
“missing energy”
Example: A neutralino 
decay in the detector

0
1

~χ
γ

G~

35 GeV

The result is 35 GeV 
of missing energy.
The gravitino escapes the 
detector while the photon 
does not.
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Backgrounds

• There are three types of backgrounds 
that can fake our dark matter signal:

1. Standard Model events
2. Cosmic-ray events
3. Beam related events

• We can separate them using their unique 
photon time distributions
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Standard Model Backgrounds
• Standard Model events produce 

photons directly from the 
collision point with corrected 
times, on average, of zero

Correct Match Incorrect Match

Corrected Photon Time Corrected Photon Time

Photon CollisionOther Collision

γ

• However, if the photon is 
matched to the wrong collision, 
it can appear delayed
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Cosmic Ray Events
• A cosmic ray muon can deposit energy in 

the calorimeter that can seem like a photon
• If a collision occurs at a similar time, the 

fake photon can look delayed.
Cosmic ray μ

Fake γ

Uncorrelated 
collision

CDF calorimeter

p p

Corrected Photon Time

Cosmic rays are 
random in time so 
the distribution is flat
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Beam Related Events
• Protons can hit the beam pipe and 

produce energetic muons
• These muons can interact with the 

detector to produce a fake photon



Beam Related Events
• The beam produced muons arrive earlier 

at the detector than collision particles 
• Their fake photons should have negative 

corrected times

Corrected Photon Time

Secondary 
beam 
interactions
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Signal
• We use the photon timing distributions of the 

backgrounds to estimate them
• We predict much more signal than background 

for 2<Photon Time<10 ns.

Corrected Photon Time (ns)

Signal
Standard Model
Beam Related
Cosmic Ray
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My Work this Summer

• An analysis looking for delayed photons 
and missing energy has already been 
published (no discovery)
– Phys. Rev. Lett. 99 121801 (2007)

• My work this summer has been towards 
improving this previous analysis…
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Determining the Collision
• The old analysis used a 

complicated collision 
reconstruction algorithm 
to determine what 
collision produced the 
photon

• To greatly simplify the 
analysis, I am working 
on using a single high 
momentum track to 
indicate where the 
collision occurred

Dominant Production Diagram

Can show up as high momentum 
tracks originating from the collision



Missing Energy Significance
• Missing energy can arise in multiple ways…
• We determine the “significance” of missing 

energy to tell whether it is from real physics

+e −e

Calorimeter Mismeasurement

45 GeV 35 GeV

There is 10 GeV of missing energy.

This occurs commonly so the 
missing energy is not significant.

γ

Real Physics

40 GeV

There is 40 GeV of missing energy.

The missing energy is significant.

G~
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(Both particles should have 40 GeV.) (Both particles should have 40 GeV.)
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Missing Energy Plots
• Standard model events should have lower missing 

energy significance than our signal events
Background EventsSignal Events

70% of events have 
Significance > 2

Missing Energy SignificanceMissing Energy Significance

5% of events have 
Significance > 2
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Adding More Data

• The amount of data available for the 
analysis is now over 4 times as much as 
was used in the original analysis

• This alone will greatly increase the 
sensitivity of the search
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Results/Predictions
• Our current and 

predicted 
sensitivities

• The prediction 
will improve with 
better search 
techniques

• We are almost 
into the favored 
region

Theoretically 
Favored Region

Current 
Sensitivity

Expected Sensitivity 
with more data
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Conclusion
• With additional data and 

the improvements I have 
described, our prospects 
for discovery are promising

• With luck, we may be able 
to solve the cosmological 
mystery of dark matter
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